
EMBEDDED PROGRAMMING
A Recipe for a Killer Embedded
Application

Time Domain Reflectometry
Explained

More on Programmable
Robotics

Solar Data Logger
Design

CIRCUIT CELLAR

w
w

w
.circuitcellar.com T H E M A G A Z I N E F O R C O M P U T E R A P P L I C AT I O N S

$5.95 U.S. ($6.95 Canada)

#225 April 2009

Build a USB GPIO Pod p.16 • Robot Navigation Software p. 30 • Decode Signal Transmissions p. 40

Cover - 225.qxp 3/3/2009 1:49 PM Page 1

FOUNDER/EDITORIAL DIRECTOR
Steve Ciarcia

MANAGING EDITOR
C. J. Abate

WEST COAST EDITOR
Tom Cantrell

CONTRIBUTING EDITORS
Jeff Bachiochi
Ingo Cyliax
Robert Lacoste
George Martin
Ed Nisley

NEW PRODUCTS EDITOR
John Gorsky

PROJECT EDITORS
Gary Bodley
Ken Davidson
David Tweed

ASSOCIATE EDITOR
Jesse Smolin

ADVERTISING
860.875.2199 • Fax: 860.871.0411 • www.circuitcellar.com/advertise

PUBLISHER
Sean Donnelly
Direct: 860.872.3064, Cell: 860.930.4326, E-mail: sean@circuitcellar.com

ADVERTISING REPRESENTATIVE
Shannon Barraclough
Direct: 860.872.3064, E-mail: shannon@circuitcellar.com

ADVERTISING COORDINATOR
Valerie Luster
E-mail: val.luster@circuitcellar.com

CONTACTS
SUBSCRIPTIONS

Information: www.circuitcellar.com/subscribe, E-mail: subscribe@circuitcellar.com
Subscribe: 800.269.6301, www.circuitcellar.com/subscribe, Circuit Cellar Subscriptions, P.O. Box 5650,
Hanover, NH 03755-5650
Address Changes/Problems: E-mail: subscribe@circuitcellar.com

GENERAL INFORMATION
860.875.2199, Fax: 860.871.0411, E-mail: info@circuitcellar.com
Editorial Office: Editor, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: editor@circuitcellar.com
New Products: New Products, Circuit Cellar, 4 Park St., Vernon, CT 06066, E-mail: newproducts@circuitcellar.com

AUTHORIZED REPRINTS INFORMATION
860.875.2199, E-mail: reprints@circuitcellar.com

AUTHORS
Authors’ e-mail addresses (when available) are included at the end of each article.

CIRCUIT CELLAR®, THE MAGAZINE FOR COMPUTER APPLICATIONS (ISSN 1528-0608) is published monthly by Circuit Cellar
Incorporated, 4 Park Street, Vernon, CT 06066. Periodical rates paid at Vernon, CT and additional offices. One-year (12 issues)
subscription rate USA and possessions $23.95, Canada/Mexico $34.95, all other countries $49.95.Two-year (24 issues) sub-
scription rate USA and possessions $43.95, Canada/Mexico $59.95, all other countries $85. All subscription orders payable in
U.S. funds only via Visa, MasterCard, international postal money order, or check drawn on U.S. bank. Direct subscription orders
and subscription-related questions to Circuit Cellar Subscriptions, P.O. Box 5650, Hanover, NH 03755-5650 or call
800.269.6301.

Postmaster: Send address changes to Circuit Cellar, Circulation Dept., P.O. Box 5650, Hanover, NH 03755-5650.

Circuit Cellar® makes no warranties and assumes no responsibility or liability of any kind for errors in these programs or schematics or for the
consequences of any such errors. Furthermore, because of possible variation in the quality and condition of materials and workmanship of read-
er-assembled projects, Circuit Cellar® disclaims any responsibility for the safe and proper function of reader-assembled projects based upon or
from plans, descriptions, or information published by Circuit Cellar®.

The information provided by Circuit Cellar® is for educational purposes. Circuit Cellar® makes no claims or warrants that readers have a right to
build things based upon these ideas under patent or other relevant intellectual property law in their jurisdiction, or that readers have a right to
construct or operate any of the devices described herein under the relevant patent or other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for constructing or operating such devices.

Entire contents copyright © 2009 by Circuit Cellar, Incorporated. All rights reserved. Circuit Cellar is a registered trademark of Circuit Cellar, Inc.
Reproduction of this publication in whole or in part without written consent from Circuit Cellar Inc. is prohibited.

CHIEF FINANCIAL OFFICER
Jeannette Ciarcia

MEDIA CONSULTANT
Dan Rodrigues

CUSTOMER SERVICE
Debbie Lavoie

CONTROLLER
Jeff Yanco

ART DIRECTOR
KC Prescott

GRAPHIC DESIGNERS
Grace Chen

Carey Penney

STAFF ENGINEER
John Gorsky

Cover photography by Chris Rakoczy—Rakoczy Photography
www.rakoczyphoto.com

PRINTED IN THE UNITED STATES

Sure, workarounds are great. It’s clear that a nifty workaround can
be helpful when you’re in a tight bind, particularly when a client or
project manager is breathing down your neck. But there’s no “working
around” the fact that a workaround is nothing more than a temporary
fix—a fix that, if left unattended, can trigger a project-wide disaster. I
know, you probably have a story about how you saved the day with a
brilliant workaround on a day when failure was just over the horizon.
I applaud you for that success, because we here at Circuit Cellar value
ingenuity in all its forms. But at the end of the day, you must agree
that a solution always trumps a workaround at the workbench.

The process of tailoring a solution to an embedded design problem
requires a talented engineer to troubleshoot complex circuitry and code
glitches of all sorts. And if a glitch lies around the corner, rather than
presently before him, a good engineer must be able to troubleshoot that
potential complication before it rears itself up.

As with most embedded-design-related skills, the science of trou-
bleshooting both existing and potential problems takes time to master.
It is typically developed over the course of dozens of projects and nur-
tured by adept mentors such as Circuit Cellar authors. Like our founder
Steve Ciarcia, many Circuit Cellar authors have excelled at trou-
bleshooting existing and potential design problems—as well as real-
world problems fixable with embedded design applications—over the
course of many years. In this issue, a group of stand-out authors unites
to present useful articles that highlight their wide range of skills.

Lack a parallel port? No worries. In a series titled “Construct a USB
GPIO Pod,” DJ Delorie shows you how to address this problem with a
general-purpose input/output module that plugs into a USB port. This
month he presents the module (p. 16). Encountering trouble while build-
ing your first solar data logger? Columnist Ed Nisley describes how to
assess your mistakes, regroup, and move forward (p. 24).

Wondering how to program that motionless robot sitting beside your
workbench? Don’t let software problems keep you from realizing your
design goals. In the second part of his series, “Robot Navigation and
Control,” Guido Ottaviani explains how to write and debug software to
get the job done (p. 30). Jeff Bachiochi’s article on page 58 includes infor-
mation about application development for a basic robotics system.

Having issues with the signal-processing aspect of a design or, more
specifically, decoding a particular signal? You’re in luck. Two authors
focus on demystifying the topics of signal processing, signal reflection,
and signal analysis. Danilo Consonni explains how he decodes hourly
signal transmissions (p. 40). He built a digital decoder to analyze the
Italian SRC-RAI time signal. If you’re confused by the topics of signal
reflection or impedance mismatching, turn to Robert Lacoste’s article,
“Time Domain Reflectometry” (p. 50). He describes how to detect and
measure an impedance mismatch in a transmission line and more.

Tom Cantrell wraps up the issue by explaining why acquiring a
“healthy mix” of MCUs, sensors, and wireless technologies to keep on
hand can lead to the creation of exciting new “killer apps” (p. 66). With
a nice variety of cutting-edge parts on tap, you can push the innovation
envelope and quickly solve any number of menacing design problems.

Troubleshooters, Unite!

cj@circuitcellar.com

44 CIRCUIT CELLAR® • www.circuitcellar.com

Ap
ril

 2
00

9
–

Iss
ue

 2
25

TASK
MANAGER CIRCUIT CELLAR®

THE MAGAZINE FOR COMPUTER APPLICATIONS

Task_Masthead_225.qxp 3/9/2009 8:54 AM Page 4

http://www.circuitcellar.com/advertise
mailto:sean@circuitcellar.com
mailto:shannon@circuitcellar.com
mailto:val.luster@circuitcellar.com
http://www.rakoczyphoto.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
http://www.circuitcellar.com/subscribe
mailto:subscribe@circuitcellar.com
mailto:info@circuitcellar.com
mailto:editor@circuitcellar.com
mailto:newproducts@circuitcellar.com
mailto:reprints@circuitcellar.com
mailto:cj@circuitcellar.com
http://www.circuitcellar.com

66 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

INSIDE ISSUE

TASK MANAGER 4
Troubleshooters, Unite!

C. J. Abate

NEW PRODUCT NEWS 8
edited by John Gorsky

CROSSWORD 74

INDEX OF ADVERTISERS 79
May Preview

PRIORITY INTERRUPT 80
Print Is Dead—Long Live Print

Steve Ciarcia

24 INTELLIGENT ENERGY SOLUTIONS
ABOVE THE GROUND PLANE
SSoollaarr DDaattaa LLooggggeerr ((PPaarrtt 11))
PCB Layout, Inductor Saturation, and Other Troubles
Ed Nisely

50 THE DARKER SIDE
TTiimmee DDoommaaiinn RReefflleeccttoommeettrryy
Detect and Measure Impedance Mismatches
Robert Lacoste

58 FROM THE BENCH
PPrrooggrraammmmaabbllee RRoobboottiiccss ((PPaarrtt 22))
Application Development
Jeff Bachiochi

66 SILICON UPDATE
ZZSSTTAARR TTrreekk
A Healthy Mix of MCUs, Sensors, and Wireless Technology
Tom Cantrell

222255
16 Construct a USB GPIO Pod (Part 1)

No Parallel Port, No Problem
DJ Delorie

30 Robot Navigation and Control (Part 2)
Software Development
Guido Ottaviani

40 Digital Decoding
Decode Periodic Signal Transmissions
Danilo Consonni

April 2009 • Embedded Programming

p. 16 USB
GPIO Pod

p. 40 Digital
Decoder Design

p. 24
Solar Data
Collection

TOC_225.qxp 3/6/2009 12:27 PM Page 6

http://www.circuitcellar.com

3300 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

Guido built a navigation and control subsystem for an autonomous differential
steering explorer robot. Here he describes the software development phase of
the project.

Robot Navigation and Control (Part 2)

Software Development

I

F
EA

TU
RE

ARTICLE
by Guido Ottaviani

n the first part of this article series, I described how to build
a robotic platform with Microchip Technology dsPIC con-

trollers. Now I will describe the software loaded on the board that
manages wheel speed, closed-loop control with a PID algorithm,
dead-reckoning by odometry (in both theoretical and practical
forms), field mapping, navigation, motor control (MC), and more.
The software is modular, so all the pieces can be examined as
stand-alone black boxes. I’ll focus on the Microchip dsPIC30F
board so you can better understand every block. You’ll find the
detailed comments in the code to be extremely helpful.

FIRMWARE
The philosophies of MC and supervisor programs are similar.

Both involve the recycling of numerous portions of the code. The
programs are described step by step in the code. The name of the
MC’s DSC program is dsPID. The program in the supervisor is
dsODO.

The source code, MPLAB project, and detailed flowcharts are
posted on the Circuit Cellar FTP site. Both programs (dsPID and
dsODO) are fully interrupt-driven. At start-up, after the initializa-
tion of the supervisor and MCs, the programs enter a simple main
loop, acting as a state machine. In the main loop, the program
checks flags enabled by external events and enters in the relative
state (see Figure 1). Because it’s a kind of simple cooperative real-
time operative system (RTOS), each routine has to be executed in
the shortest possible amount of time to free up the system to han-
dle frequent tasks. There are no delays in the code. Interrupts are
used whenever possible, particularly for slow operations like the
transmission or reception of strings of characters.

MCs use the C30’s PID library to control the speed and position
of the wheels. The feedback from the encoders on the motors’ axes

FFiigguurree 11——A dsPID main loop is simple because most of the program is interrupt-driven.

dsPID

Settings

UART Rx

Parser

Main loop

UART Tx

PID

LED Blinking

Y

N

N

Y

Enabled by
supervisor?

USART and
 ISR Setting

Char
received?

N

YCommand
string

received?

N

Y
String ready

to TX?

N

Y
INT 1 ms from

supervisor?

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 30

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 3311

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

enables this (see Table 1). Peripherals on the MCs include
QEI to calculate the covered space, input capture (IC2) to
calculate speed, an ADC to read motor current, enhanced
PWM to drive the motors, and a UART to communicate
with the supervisor.

dsPID
The same program (dsPID) is loaded in both of the MCs,

and the supervisor assigns them a different ID at initializa-
tion (to address each one later). Speed and position meas-
urements are executed simultaneously by both MCs when
an external interrupt occurs from the general timing signal
provided by the supervisor.

A QEI module determines the wheels’ distance and
direction. This value is algebraically cumulated in a vari-
able every 1 ms and sent to the supervisor at its request.
After the value is sent, the variable is reset.

Speed is measured at every encoder’s pulse. Every 1 ms,
it calculates the mean speed by averaging samples, exe-
cutes a PID algorithm, and corrects the motor speed
according to its result, changing the PWM duty cycle (see
Photo 1). For a detailed description of the C30 PID library
application, refer to the following Microchip code example:
“CE019: Proportional Integral Derivative (PID) Controllers
& Closed-Loop Control.”[1] A link is provided in the Refer-
ences section at the end of this article.

Speed variations of the motors are executed smoothly,
accelerating or decelerating with a rising or falling slanted
ramp to avoid heavy mechanical strain and wheel slippage
that could cause errors in odometry. Deceleration is faster
than acceleration to avoid bumps with obstacles during
braking (see Photo 2).

IC2, input capture, is used to measure the time elapsed
between two pulses generated by the encoder (i.e., when
the wheel moves a fixed distance). Connected in parallel to
QEA, it captures elapsed time on the rising edge of the
encoder’s signal. TIMER2 is used in free-running mode. At
each IC2 interrupt, TMR2’s current value is stored and its
previous value is subtracted from it. This is the pulse peri-
od. The current value then becomes the previous value,
awaiting the next interrupt. TMR2’s flag must be checked

to determine if an overflow occurred in
the 16-bit register. If one occurred, the dif-
ference between 0xFFFF and the previous
sample has to be added to the current
value. Samples are algebraically added in
the IcPeriod variable. The _UPDN bit of
the QEI register is set or reset if the wheel
is rotating forward or backward. The
value of each sample is algebraically
cumulated, so it’s added if the bit is set,
or subtracted if reset, to measure the actu-
al space covered. This is one of the sug-
gested methods in Microchip’s application
note AN545.[2]

The ADC continuously measures motor
current, storing values in its 16-position
ADCBUF buffer. When the buffer is full,

an interrupt occurs and a mean value is calculated. This
happens approximately every 1 ms.

The UART receives commands from the supervisor and
sends it the results of the measurements. The communica-
tion portion of the program runs as a state machine. Status
variables are used to execute actions in sequence. Simple
and fast interrupt service routines (ISRs) get or put every
single byte from or to a buffer and set the right flags to let
the proper function be executed.

TX I/O is disabled at initialization. If an I/O pin is set as
an input pin, it enters into a “three-state” mode, meaning
a high-impedance mode, which enables you to use parallel
pins. This is the default configuration. This setup enables
you to connect both MCs’ TX ports together. They will be
enabled one at a time by the supervisor with INT1.

The same program is in both MCs. Each MC is identified
by an ID code to enable the supervisor to send commands
to the proper motor. At start-up, the program loops before
the “main” idle loop, waiting for a supervisor’s enable sig-
nal through CN5 I/O port. After that, the correct ID is
assigned. The start-up ID is 9 for both MCs.

TTaabbllee 11——These are the pins used on the Microchip Technology dsPIC30F4012.

Usage Pin name Pin number Pin name Usage
MCLR 1 15 INT1 TX Enable

ADC Reference VREF+ 2 16 INT0 Timer 1 ms from supervisor

Motor current reading AN1 3 17 PGD/EMUD

4 18 PGC/EMUC

Chip select from supervisor CN5 5 19 VSS

Quadrature encoder QEA 6 20 VDD

Quadrature encoder QEB 7 21

VSS 8 22 RE4 LED 2

OSC1 9 23 RE3 LED 1

10 24 RE2 H-bridge Enable

Serial TX U1ATX 11 25 PWM1H PWM

Serial RX U1ARX 12 26 PWM1L PWM

VDD 13 27 AVSS

Velocity measurement IC2 14 28 AVDD

PPhhoottoo 11——This test set verifies H-bridge and PID parameters. The
motor under test is mechanically joined with a similar motor. This
one is loaded on a power variable resistor to easily simulate a varia-
tion in mechanical load for the first motor.

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 31

http://www.circuitcellar.com

3322 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

The supervisor will assign the definitive ID, subsequent-
ly enabling each MC. In normal operation, both MCs
simultaneously receive data sent by the supervisor, but
only the addressed one (with the correct ID) decodes the
message. A message with ID = 0 (broadcast) is decoded by
both MCs. If an error occurs during reception (i.e., UART,
checksum, parsing errors), the status variable is set to a
negative number and the red LED illuminates to indicate
the fault condition.

The supervisor drives both MCs through the UART1
communication port, sending commands and reading infor-
mation (space, speed, and motor current). It estimates the
robot’s position using that information (dead-reckoning by
odometry) and creates a map of the path, obstacles, and so
on. This is done with the help of the dsPIC30F’s trigono-
metric capabilities programmed with the C30 compiler.

The peripherals used on the supervisor include UART1
to communicate with the MCs, UART2 for telemetry with
the remote PC, I2C to communicate with the main board,
and OC simple PWM to generate the clock for both MCs
(see Table 2).

dsODO
The peripherals UART1 through UART2 are used to

communicate with the MCs and for telemetry with a
remote PC, respectively. They are used the same way as
the MCs: similar ISRs, similar functions. The protocol
used for the handshake is also the same. The physical-
layer-independent protocol is used with the I2C bus, as
well as to communicate with the main board.

The dsPIC peripheral interface controls the first layer.
Frame, or overrun errors (UART), or collisions (I2C) are
detected by hardware, setting the appropriate flag. ISR rou-
tines handle the second layer. They fill the RX buffer with
the bytes received from the interfaces. They also detect
buffer overflow and command overrun. UartRx or UartRx2
functions manage the third layer. These routines act as a

PPhhoottoo 22——This is one of the first tests during the calibration of PID
parameters. It shows the measured speed after a remote request to
switch from 50 to 300 cm/s and back to 50 cm/s. Note the rising
ramp with less slope than the falling one.

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 32

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.calao-systems.com

3344 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

updated, the watchdog is cleared, and a flag is set to enable
the function that requests the MC’s distance. Every 10 ms,
an “All_Parameters_Ask” function (speed, position, and
current) is enabled. The same clock is used, through a
pulse on RB5, to synchronize MCs for PID and position
elaboration.

PWM (output Compare 1) is used to obtain the oscillator
frequency for the MCs. The OC simple PWM I/O peripheral
is set to have a PWM at 50% duty cycle with a 7.3728-MHz
frequency (the same as the supervisor crystal):

PWM_period=(PRx+1)•4•TOSC•(TMRx_prescale_value)

With Prx = 3, prescale = 1 7.3728 MHz is obtained
again at output. With this output, both MCs can be driv-
en in EC 16xPLL mode. This way, all three DSCs have
exactly the same clock and some components are saved
on the board.

With data coming from the MCs, the supervisor per-
forms field-mapping. For more information about the
topic of dead-reckoning by odometry, refer to the follow-
ing works: “Where Am I?: Sensors And Methods For
Mobile Robot Positioning,” by Johann Borenstein[3];
“Implementing Dead Reckoning by Odometry on a Robot
with R/C Servo Differential Drive,” by Dafydd Walters[4];
and “A Tutorial and Elementary Trajectory Model for the
Differential Steering System of Robot Wheel Actuators,”
by G. W. Lucas.[5] Simplified algorithms are also in these

state machine, getting bytes from the buffer and decoding the
command string (see Table 3).

This layer controls timeout and checksum errors, as well
as packet consistency (correct header, correct length). If
everything is fine, it allows the Parser routine (fourth
layer) to decode the message and to execute the required
action. This routine sets the appropriate error flag if the
message code received is unknown.

TMR1 generates a 1,000-Hz timing clock (the program’s
heartbeat). On each TMR1’s interrupt, internal timers are

TTaabbllee 22——These are the pins used on the Microchip dsPIC30F3013.

Usage Pin name Pin number Pin name Usage
MCLR 1 15 EMUC2

2 16

Generic chip select 1 RB1 3 17 PGD/SCL PGD also I2C clk

TX enable 1 RB2 4 18 PGC/SDA PGC also I2C dat

Generic chip select 2 RB3 5 19 VSS

TX enable 2 RB4 6 20 VDD

1-ms Heartbeat RB5 7 21 U2TX Serial 2 TX

VSS 8 22 U2RX Serial 2 RX

OSC1 9 23 RB9 LED 1

OSC2 10 24 OC1 Clock out for
Motor controllers

Serial 1 TX U1ATX 11 25 EMUD2 EMUD2

Serial 1 RX U1ARX 12 26 RB6 LED 2

VDD 13 27 AVSS

14 28 AVDD

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 34

http://www.circuitcellar.com
http://www.jkmicro.com
http://www.machinepier.com

www.circuitcellar.com • CIRCUIT CELLAR® 3355

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

defined with a nibble, with a total memory occupation of
1,250 bytes. Sixteen different values can be assigned to
each cell (e.g., n = 00 unknown cell, n = 01 – 10 cell visited
n times, n = 11 obstacle found, n = 12 target of type A
found, n = 13 target of type B found, and n = 14 target of
type C found).

The robot can start from any position in the field.
Note that (0, 0) is the reference coordinate in its refer-
ence system. To translate robot reference system coordi-
nates to a 50 × 50 matrix index pair, the values must be
“normalized” in a 0 to 49 range: Xnorm = (Xrel + 50)
mod 50 and Ynorm = (Yrel + 50) mod 50. Index is the
remainder of division in a range of 0 to 49. A range check
must be performed in advance to avoid overflow if the
field is greater than 5 m × 5 m.

To create a 50 × 50 nibble matrix, you need to define a
struct (see Listing 1). It fills up 1,250 bytes. Eliminat-
ing heap space (not needed if dynamic memory allocation
or file I/O library functions are not used) leaves enough
RAM to work with.

Field-mapping is useful for finding the best exploring
strategy in an unknown field. The robot can direct itself
to the less explored portion of the field (lower “n” value);
it can save time by not stopping twice in an already dis-
covered target; and it can find the best path to reach a
given coordinate, and more.

DEAD RECKONING BY ODOMETRY
Let’s consider the general dead-reckoning algorithm

needed for a DSC- or microcontroller-based system. Once
you have the information about the distance traveled by
each wheel in a discrete time update (odometry), you can
estimate the robot’s position coordinates with the same
periodicity without any external reference (dead reckon-
ing). Refer to G.W. Lucas’s aforementioned paper for
information about the mathematics.[5] In the following
equations, I used Lucas’s symbols and terms:

Figure 2 shows the terms used in the formulas for a turn-
ing platform.

For each discrete time interval, the system measures
the number of pulses generated by the encoders. Know-
ing the distance represented by a single encoder tick, you
can calculate the distance traveled by the wheels (SR, SL)
in time t. Note that velocity = distance/time:

According to Lucas:

ν

ν

R

L

 S
t

 S
t

R

L

=

=

ϑ
ν ν

ϑ

ν ν
ν ν

t
t

b

x t
R

() =
−()

+

() = +
+()
−()

 x
b

R L
0

0
R L

L2
sin

νν ν
ϑ ϑ

ν

R t
b

y t

 sin

 y
b

L
0 0

0
R

−()
+

⎛
⎝⎜

⎞
⎠⎟

− ()⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

() = −
+

 cosL

L

L
0 0

ν
ν ν

ν ν
ϑ ϑ

()
−()

−()
+

⎛
⎝⎜

⎞
⎠⎟

− ()⎡

⎣
⎢
⎢

⎤

⎦
⎥2 R

R t
b

cos
⎥⎥

documents. You can find the correct compromise
between precision and computing speed by using the
trigonometric capability of the dsPIC30F series.

Every few milliseconds, after the current position elaboration,

field mapping divides the unknown field in a 10 cm × 10 cm
cell grid. Defining a maximum field dimension of 5 m × 5 m,
you obtain a 2,500-cell matrix (50 × 50). Each cell is

FFiigguurree 22——This is a definition of the terms used in the formulas for a
turning platform.

R = r + b/2

r

θ

SL

X0, Y0, θ0

X1, Y1, θ1

b

SR

TTaabbllee 33——This is the structure for the command packets. Each one
contains all the bytes shown.

Sequence Name Range Note
1 Header @

2 ID 0–9 ASCII

3 Cmd A–Z ASCII

4 CmdLen 1-MAX_RX_BUFF Number of bytes following
(checksum included)

5 Data ...

.. ...

n Checksum 0–255 Obtained by simply adding up
in an 8-bit variable, all bytes
composing the message
(checksum itself excluded).

LLiissttiinngg 11——To create a 50 × 50 nibble matrix, you need to define
a struct.

typedef struct
{

unsigned char Low :4;
unsigned char High :4;

}_Coordinate;

_Coordinate MapXY [25][50];

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 35

http://www.circuitcellar.com

3366 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

You can calculate:

Note that at time ti, the differences with the coordinates

x t
S

b

y t

R() = +
−()

+
⎛
⎝⎜

⎞
⎠⎟

− ()⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(

 x R
 S

 sin0
L

0 0sin ϑ ϑ

)) = −
−()

+
⎛
⎝⎜

⎞
⎠⎟

− ()⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 y R
 S

 cos0
L

0 0cos
S

b
R ϑ ϑ

R
b b S

S
R

R

R

R

2

 S
2 S

L

L

L

L

=
+()
−() =

+()
−()

ν ν
ν ν

at ti–1 are:

By performing a summation of each delta x in x variable
and each delta y in y variable, you know the current coor-
dinates (position and orientation) of the platform.

To avoid computational errors (divide by zero) and wasted

Δ =
−()

Δ = Δ +() − ()⎡⎣ ⎤⎦
Δ

− −

ϑ

ϑ ϑ ϑ

S S

 R sin sin

R L

 1 1

b
x

y
i i

== () − Δ +()⎡⎣ ⎤⎦− − R cos cos 1 1ϑ ϑ ϑi i

QEB QEA IC

PWM

VelMesL

VelDesL

PulsesL

Motor controller 2
Cycle = 1 ms

Motion feedback
Left rotary encoder

Left motor

H-Bridge 2

Current sensing

QEI Mode 4× digital
filter 13 µs

Input capture > encoder
pulse period (t)

VelMesL
=

S/t

ADC
Module

PWM
Module

Speed
PID

B

A

QEB QEA IC

PWM
VelDesR

VelMesR

PulsesR

Motor controller 1

Supervisor

Cycle = 1 ms

Motion feedback
Right rotary encoder

Right motor

H-Bridge 1

Current sensing

QEI Mode 4X digital
filter 13 µs

Input capture > encoder
pulse period (t)

VelMesR
=

S/t

ADC
Module

DistL = KL
x PulsesL

VelDesL =
VelDes+DeltaV

DeltaV =
K x ω

PWM
Module

Speed
PID

B

A

mes

mes

ω

1

2

1

2

Odometry
Coordinate Xmes,

Ymes, mes

XDes, YDes
ƒ [des, DistDes]

DistMes, des

ƒ [(Xdes, Ydes),
(Xmes, Ymes)]

DisMes

DistDes
VelDes

VelDes

DistDes

2
XDes
YDes

= 0

Dist
PID

Angle
PID

2
des

1
des

VelDesR =
VelDes-DeltaV

DistR = KR
x PulsesR

FFiigguurree 33——These software logical blocks govern the robot’s navigation.

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 36

http://www.circuitcellar.com

www.circuitcellar.com • CIRCUIT CELLAR® 3377

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

speed. The supervisor sends them the
reference speed (VelDesX: desired veloc-
ity) and the input capture modules of
the microcontrollers get pulses from the
encoders connected to the motor axis
and derive the rotational speed of the
motors (VelMesX: measured velocity).
By combining the values in the PID
control Speed PID every 1 ms, you can
obtain the necessary PWM value in that
condition to keep the desired speed of
each wheel. In PID terminology,
VelDesX is usually called the setpoint
or control reference. VelMesX is the
measured output or process variable.
PWM is the control output, manipulat-
ed variable, or simply output.[6]

The Quadrature Encoder Interface
(QEI) modules get both the A and B
pulses from the encoders. They receive
the traveling direction and the number
of pulses in 4× mode (counting the ris-
ing and falling edges of signal A and
signal B: 2 × 2 = 4) to the supervisor.

Multiplying the number of pulses by
K—which indicates the distance trav-
eled for each encoder pulse—you can
determine the distances traveled by
right and left wheels every 10 ms. The
supervisor combines this traveling
information and applies the dead-reck-
oning procedure to determine the
robot’s position coordinates: Xmes,
Ymes, and θMes (orientation angle).

The supervisor receives an external
navigation command via the serial
interface (telemetry) or via the I2C inter-
face (main board). Different strategies
can be applied: A—Free running is
movement at a given speed in a given
direction (VelDes, θDes). B—Cartesian
is movement toward a given coordinate
(XDes, YDes). C—Polar is movement for
a given distance in a set direction (Dist-
Des, θDes).

In mode A with the logical control
switches in position 1, only the PID
control (Angle PID) is used on the super-
visor (see Figure 3). This combines the
desired angle θDes with the measured
angle θMes computed by the odometry
procedure—to obtain the value of the
rotation angular speed ω of the vehicle
around its vertical axis—needed to cor-
rect the orientation error.

The DeltaV value is proportional to
ω. It’s added to VelDes to obtain the left
wheel’s speed and subtracted from

controller time, both the SR and SL vari-
ables must be checked in advance.
Defining a quasi-zero value Smin, which
takes care of minimal mechanical and
computational approximations, you get
the following. If |SR – SL| < Smin, the plat-
form is traveling in a nearly straight line
and you can use the method from
Lucas’s paper without approximations:[5]

If |SR + SL| < Smin, the platform is pivot-
ing around its own vertical axis with-
out moving. Thus:

SOFTWARE ARCHITECTURE
Figure 3 shows the overall software

architecture for the dsNavCon board’s
control procedures and navigation strate-
gies. The most important logical blocks
are the four PID controls. They are
shown in a three-level nested control
loop. Starting from the top level, the
Distance PID controls the robot’s mean
speed toward the target every 50 ms.
The Angle PID corrects the orientation
to point the target every 10 ms by
adding or subtracting a DeltaV to the
mean speed to make the vehicle spin
around its vertical axis. By combining
the outputs of the Angle and Distance
PIDs, you can determine the setpoint for
the most internal level, the Speed PIDs.
Each of the PIDs controls the speed of its
wheel every 1 ms to maintain the value
set by outer loops (see Figure 3). By com-
bining the output of Angle and Distance
PIDs, you can obtain the setpoint for the
Speed PIDs (see Figure 3). The three lev-
els are nested. But, fortunately, the dif-
ferent PIDs (speed, orientation, and dis-
tance) are independent of each other,
simplifying the K parameter’s calibration
procedure. They can be set one at a time
starting from the bottom.

The motor controllers appear as dark
boxes that take care of the wheels’

Δ =
−()

Δ = Δ =

ϑ
S S

b
 0

R L

x y

Δ =
+()

≅ ≅

Δ =
−()

=

Δ = Δ

S

x S i

S S

2
 S S

S S

b
 0

R L
R L

R Lϑ

ϑcos 1

 1
−

−

()
Δ = Δ ()y S isin ϑ

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 37

http://www.circuitcellar.com
http://www.xgamestation.com
http://www.picservo.com
http://www.lvr.com

3388 CIRCUIT CELLAR® • www.circuitcellar.com

A
pr

il
2
0
0
9
 –

 I
ss
ue

 2
2
5

ROJECT FILES
To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009
/225.

EFERENCES
[1] Microchip Technology, Inc., Microchip code examples, “CE019: Propor-

tional Integral Derivative (PID) Controllers & Closed-Loop Control,”
2005, www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&
nodeId=2620.

[2] M. Palmer, “AN545: Using the Capture Module,” DS00545D, Microchip
Technology, Inc., 1997.

[3] J. Borenstein, H. R. Everett, and L. Feng, “Where Am I?: Sensors and
Methods for Mobile Robot Positioning,” University of Michigan, 1996,
www-personal.umich.edu/~johannb/position.htm.

[4] D. Walters, “Implementing Dead Reckoning by Odometry on a Robot
with R/C Servo Differential Drive,” Encoder, 2000, www.seattlerobot-
ics.org/encoder/200010/dead_reckoning_article.html.

[5] G. W. Lucas, “A Tutorial and Elementary Trajectory Model for the Dif-
ferential Steering System of Robot Wheel Actuators,” SourceForge, 2001,
http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html.

[6] Wikipedia, “PID Controller,” http://en.wikipedia.org/wiki/PID_controller.

[7] J. Borenstein and L. Feng, “UMBmark: A Method for Measuring, Com-
paring, and Correcting Odometry Errors in Mobile Robots,” 1994,
www-personal.umich.edu/~johannb/umbmark.htm.

ESOURCES

G. Ottaviani, www.guiott.com/Rino/index.html.

Roboteck Discussion Group, http://it.groups.yahoo.com/group/roboteck/
(Italian) or http://groups.yahoo.com/group/roboteck_int/ (English)

Robot Italy, www.robot-italy.com

OURCES
Eagle Software
CadSoft Computer, Inc. | www.cadsoftusa.com

dsPIC30F3013 Digital signal controller, dsPIC30F4012 motor controller,
and dsPIC33FJ64MC802 microcontroller
Microchip Technology, Inc. | www.microchip.com

PP

RR

SS

RR

Guido Ottaviani (guido@guiott.com) has worked with electronics and ham radios
for years. After working as an analog and digital developer for an Italian commu-
nications company for several years, Guido became a system integrator and
then a technical manager for a company that develops and manages graphic,
prepress, and press systems and technologies for a large Italian sports newspa-
per and magazine publisher. A few years ago, he dusted off his scope and sol-
dering iron and started making autonomous robots. Guido is currently an active
member in a few Italian robotics groups, where he shares his experiences with
other electronics addicts and evangelizes amateur robotics.

VelDes—to obtain the right wheel’s
speed—in order to keep the heading
corresponding to the θDes value, while
the center of the robot is still moving
at the VelDes speed.

In mode B, with the logical control
switches in position 2, the desired speed
VelDes is calculated by the PID control
Dist PID, and it is used as in mode A.
This means the mean speed decreases
proportionally to the distance from the
target. It becomes zero when the target is
reached. The measured input for this PID
(DistMes) is computed as a function of
the current coordinates and the destina-
tion coordinates. The desired orientation
angle θDes also comes from the same
procedure and it’s used as reference input
for Angle PID. The reference input for
Dist PID is 0, meaning that the destina-
tion is reached. With ω and VelDes avail-
able, the wheels’ speed control runs as it
does in the first mode.

In mode C, with the logical control
switches in position 2, the destination
coordinates (Xdes, Ydes) are computed
once at the beginning as a function of
input parameters (DistDes, θDes). After
that, everything operates as it does in
mode B.

A sequencer is also available to per-
form some specific paths for UMBmark
(or something like the RTC competition I
mentioned in the first part of this article
series).[7] Like a washing machine timer, it
schedules the robot’s behavior by execut-
ing a series of primitives. The sequence is
written in some arrays, and it is synchro-
nized by external events. Some higher-
priority events (e.g., obstacles found by
external sensors) can override scheduling.

TIME TO GO ROBO
There are plenty of affordable robots

on the market. Plus, the MPLAB devel-
opment environment is free. You can
design the schematic and PCB with the
freeware version of CadSoft Computer’s
Eagle. These tools are versatile enough
for a wide variety of applications.
Affordable electronic and mechanical
components are also widely available
on the Internet. Do some reseach before
shelling out a lot of cash for an expen-
sive kit.

No more excuses. You are now ready
to design, build, program, and test your
own robot. I

2904015_Ottaviani.qxp 3/6/2009 12:38 PM Page 38

mailto:guido@guiott.com
ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009/225
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2620
http://www.seattlerobotics.org/encoder/200010/dead_reckoning_article.html
http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html
http://en.wikipedia.org/wiki/PID_controller
http://www.guiott.com/Rino/index.html
http://it.groups.yahoo.com/group/roboteck/
http://groups.yahoo.com/group/roboteck_int/
http://www.robot-italy.com
http://www.cadsoftusa.com
http://www.microchip.com
http://www.circuitcellar.com
http://www-personal.umich.edu/~johannb/position.htm
http://www-personal.umich.edu/~johannb/umbmark.htm

	225.pdf
	2905016_Smith

