r

April 2009 — lssue 295

w
o

X

T

/:;AH’I'ICL |

by Guido Ottaviani

Robot Navigation and Control a2

Software Development

GQuido built a navigation and control subsystem for an autonomous differential
steering explorer robot. Here he describes the software development phase of

the project.

n the first part of this article series, I described how to build

a robotic platform with Microchip Technology dsPIC con-
trollers. Now I will describe the software loaded on the board that
manages wheel speed, closed-loop control with a PID algorithm,
dead-reckoning by odometry (in both theoretical and practical
forms), field mapping, navigation, motor control (MC), and more.
The software is modular, so all the pieces can be examined as
stand-alone black boxes. I'll focus on the Microchip dsPIC30F
board so you can better understand every block. You'll find the
detailed comments in the code to be extremely helpful.

FIRMWARE

The philosophies of MC and supervisor programs are similar.
Both involve the recycling of numerous portions of the code. The
programs are described step by step in the code. The name of the
MC’s DSC program is dsPID. The program in the supervisor is
dsODO.

The source code, MPLAB project, and detailed flowcharts are
posted on the Circuit Cellar FTP site. Both programs (dsPID and
dsODO) are fully interrupt-driven. At start-up, after the initializa-
tion of the supervisor and MCs, the programs enter a simple main
loop, acting as a state machine. In the main loop, the program
checks flags enabled by external events and enters in the relative
state (see Figure 1). Because it’s a kind of simple cooperative real-
time operative system (RTOS), each routine has to be executed in
the shortest possible amount of time to free up the system to han-
dle frequent tasks. There are no delays in the code. Interrupts are
used whenever possible, particularly for slow operations like the
transmission or reception of strings of characters.

MCs use the C30’s PID library to control the speed and position
of the wheels. The feedback from the encoders on the motors’ axes

Main loop

Settings

Enabled by u

supervisor?

USART and
ISR Setting

Char
received?

UART Rx

Parser

String ready
to TX?

UART Tx

INT 1 ms from
supervisor?

PID

N

—‘ LED Blinking

Figure 1—A dsPID main loop is simple because most of the program is interrupt-driven.

CIRCUIT CELLAR

= www.circuitcellar.com

Usage Pinname | Pinnumber | Pinname | Usage to determine if an overflow occurred in
MCLR 1 15 INT1 TX Enable the 16-bit register. If one occurred, the dif-
ADC Reference VREF+ |2 16 INTO Timer 1 ms from supervisor | ference between OxFFFF and the previous
Motor current reading AN1 3 17 PGD/EMUD sample has to be added to the current
4 18 PGC/EMUC value. Samples are algebraically added in
Chip select from supervisor | CN5 5 19 VSS the IcPeriod variable. The _UPDN bit of
Quadrature encoder QEA 6 20 VDD the QEI register is set or reset if the wheel
Quadrature encoder QEB 7 21 is rotating forward or backward. The
VSs 8 22 RE4 LED 2 value of each sample is algebraically
0SscCH1 9 23 RE3 LED 1 cumulated, so it’s added if the bit is set,
10 24 RE2 H-bridge Enable or subtracted if reset, to measure the actu-
Serial TX U1ATX 11 25 PWM1H PWM al space covered. This is one of the sug-
Serial RX UIARX | 12 26 PWMIL PWM gested methods in Microchip’s application
VDD 13 27 AVSS note AN545.0
Veelocity measurement IC2 14 28 AVDD The ADC continuously measures motor

Table 1—These are the pins used on the Microchip Technology dsPIC30F4012.

enables this (see Table 1). Peripherals on the MCs include
QEI to calculate the covered space, input capture (IC2) to
calculate speed, an ADC to read motor current, enhanced
PWM to drive the motors, and a UART to communicate
with the supervisor.

dsPID

The same program (dsPID) is loaded in both of the MCs,
and the supervisor assigns them a different ID at initializa-
tion (to address each one later). Speed and position meas-
urements are executed simultaneously by both MCs when
an external interrupt occurs from the general timing signal
provided by the supervisor.

A QEI module determines the wheels’ distance and
direction. This value is algebraically cumulated in a vari-
able every 1 ms and sent to the supervisor at its request.
After the value is sent, the variable is reset.

Speed is measured at every encoder’s pulse. Every 1 ms,
it calculates the mean speed by averaging samples, exe-
cutes a PID algorithm, and corrects the motor speed
according to its result, changing the PWM duty cycle (see
Photo 1). For a detailed description of the C30 PID library
application, refer to the following Microchip code example:
“CE019: Proportional Integral Derivative (PID) Controllers
& Closed-Loop Control.”l! A link is provided in the Refer-
ences section at the end of this article.

Speed variations of the motors are executed smoothly,
accelerating or decelerating with a rising or falling slanted
ramp to avoid heavy mechanical strain and wheel slippage
that could cause errors in odometry. Deceleration is faster
than acceleration to avoid bumps with obstacles during
braking (see Photo 2).

IC2, input capture, is used to measure the time elapsed
between two pulses generated by the encoder (i.e., when
the wheel moves a fixed distance). Connected in parallel to
QEA, it captures elapsed time on the rising edge of the
encoder’s signal. TIMER?2 is used in free-running mode. At
each IC2 interrupt, TMR2’s current value is stored and its
previous value is subtracted from it. This is the pulse peri-
od. The current value then becomes the previous value,
awaiting the next interrupt. TMR2’s flag must be checked

www.circuitcellar.com = CIRCUIT CELLAR®

current, storing values in its 16-position
ADCBUEF buffer. When the buffer is full,
an interrupt occurs and a mean value is calculated. This
happens approximately every 1 ms.

The UART receives commands from the supervisor and
sends it the results of the measurements. The communica-
tion portion of the program runs as a state machine. Status
variables are used to execute actions in sequence. Simple
and fast interrupt service routines (ISRs) get or put every
single byte from or to a buffer and set the right flags to let
the proper function be executed.

TX I/O is disabled at initialization. If an I/O pin is set as
an input pin, it enters into a “three-state” mode, meaning
a high-impedance mode, which enables you to use parallel
pins. This is the default configuration. This setup enables
you to connect both MCs’ TX ports together. They will be
enabled one at a time by the supervisor with INT1.

The same program is in both MCs. Each MC is identified
by an ID code to enable the supervisor to send commands
to the proper motor. At start-up, the program loops before
the “main” idle loop, waiting for a supervisor’s enable sig-
nal through CN5 I/O port. After that, the correct ID is
assigned. The start-up ID is 9 for both MCs.

Photo 1—This test set verifies H-bridge and PID parameters. The
motor under test is mechanically joined with a similar motor. This
one is loaded on a power variable resistor to easily simulate a varia-
tion in mechanical load for the first motor.

April 2009 — lssue 295

o)
N
N
<
=
wn
2
o
|
[=p}
o]
o]
N
=}
T
=

[ST - 1] ey

T [BT = [T | BT | I | Lo | BT [|

Photo 2—This is one of the first tests during the calibration of PID
parameters. It shows the measured speed after a remote request to
switch from 50 to 300 cm/s and back to 50 cm/s. Note the rising
ramp with less slope than the falling one.

The supervisor will assign the definitive ID, subsequent-
ly enabling each MC. In normal operation, both MCs
simultaneously receive data sent by the supervisor, but
only the addressed one (with the correct ID) decodes the
message. A message with ID = 0 (broadcast) is decoded by
both MCs. If an error occurs during reception (i.e., UART,
checksum, parsing errors), the status variable is set to a
negative number and the red LED illuminates to indicate

the fault condition.
- . * ll'ﬁllr i T i
P AT w;... 511 ir‘ ,f-
"'\r" Sy

\%_ ﬁ;g.,u af- awgreo a-t"m.

un% t ihmeij 1 A

Igmmqm‘e; a “gff g J'ﬁ’ﬁr;xwgfw%ﬁsﬁ.%
[ww%ﬂnhf’: rrﬂ{{; lffowor'qﬂ" I:hr.iy‘ F
can ¢ :lthn S T qén!*:

"iht .Sy ByetonT

r Jgdid ‘?’ro%‘lﬂjl’i}m.‘ ?\f :ﬁ.@ﬂ'

. .
A e LT W T
':ﬁ;'"-:}; %"_,.? {Eﬁ'ﬁ‘ Tﬁr-..."':,.'-'"*'-.._-.

The supervisor drives both MCs through the UART1
communication port, sending commands and reading infor-
mation (space, speed, and motor current). It estimates the
robot’s position using that information (dead-reckoning by
odometry) and creates a map of the path, obstacles, and so
on. This is done with the help of the dsPIC30F’s trigono-
metric capabilities programmed with the C30 compiler.

The peripherals used on the supervisor include UART1
to communicate with the MCs, UART?2 for telemetry with
the remote PC, I’C to communicate with the main board,
and OC simple PWM to generate the clock for both MCs
(see Table 2).

dsODO

The peripherals UART1 through UART?2 are used to
communicate with the MCs and for telemetry with a
remote PC, respectively. They are used the same way as
the MCs: similar ISRs, similar functions. The protocol
used for the handshake is also the same. The physical-
layer-independent protocol is used with the I’C bus, as
well as to communicate with the main board.

The dsPIC peripheral interface controls the first layer.
Frame, or overrun errors (UART), or collisions (I*’C) are
detected by hardware, setting the appropriate flag. ISR rou-
tines handle the second layer. They fill the RX buffer with
the bytes received from the interfaces. They also detect
buffer overflow and command overrun. UartRx or UartRx2
functions manage the third layer. These routines act as a

CIRCUIT CELLAR® = www.circuitcellar.com

K April 2009 — lssue 295

Usage Pin name | Pin number | Pin name | Usage
MCLR 1 15 | EMUC2
2 16
Generic chip select 1 | RB1 3 17 | PGD/SCL | PGD also I°C clk
TX enable 1 RB2 4 18 | PGC/SDA | PGC also I’C dat
Generic chip select 2 | RB3 5 19 | VSS
TX enable 2 RB4 6 20 | VDD
1-ms Heartbeat RB5 7 21 U2Tx Serial 2 TX
VSS 8 22 | U2RX Serial 2 RX
0SC1 9 23 | RB9 LED 1
08C2 10 24 | OC1 Clock out for
Motor controllers
Serial 1 TX U1ATX 11 25 | EMUD2 | EMUD2
Serial 1 RX U1ARX 12 26 | RB6 LED 2
VDD 13 27 | AVSS
14 28 | AVDD

Table 2—These are the pins used on the Microchip dsPIC30F3013.

state machine, getting bytes from the buffer and decoding the
command string (see Table 3).

This layer controls timeout and checksum errors, as well
as packet consistency (correct header, correct length). If
everything is fine, it allows the Parser routine (fourth
layer) to decode the message and to execute the required
action. This routine sets the appropriate error flag if the
message code received is unknown.

TMRI generates a 1,000-Hz timing clock (the program’s
heartbeat). On each TMR1’s interrupt, internal timers are

T‘H’r W-'ﬂs;

fr éte: EEJMFF:

'-u-.-

ﬁd ‘imfm'qs ys a‘ems

updated, the watchdog is cleared, and a flag is set to enable
the function that requests the MC'’s distance. Every 10 ms,
an “All_Parameters_Ask” function (speed, position, and
current) is enabled. The same clock is used, through a
pulse on RB5, to synchronize MCs for PID and position
elaboration.

PWM (output Compare 1) is used to obtain the oscillator
frequency for the MCs. The OC simple PWM I/O peripheral
is set to have a PWM at 50% duty cycle with a 7.3728-MHz
frequency (the same as the supervisor crystal):

PWM_period=(PRx+1)«4«T0SCe (TMRx_prescale_value)

With Prx =3, prescale =1 7.3728 MHz is obtained
again at output. With this output, both MCs can be driv-
en in EC 16xPLL mode. This way, all three DSCs have
exactly the same clock and some components are saved
on the board.

With data coming from the MCs, the supervisor per-
forms field-mapping. For more information about the
topic of dead-reckoning by odometry, refer to the follow-
ing works: “Where Am I?: Sensors And Methods For
Mobile Robot Positioning,” by Johann Borenstein
“Implementing Dead Reckoning by Odometry on a Robot
with R/C Servo Differential Drive,” by Dafydd Walters!;
and “A Tutorial and Elementary Trajectory Model for the
Differential Steering System of Robot Wheel Actuators,”
by G. W. Lucas.! Simplified algorithms are also in these

CIRCUIT CELLAR®

= www.circuitcellar.com

Sequence | Name Range Note

1 Header @

2 ID 0-9 ASCII

3 Cmd A-Z ASCII

4 CmdLen 1-MAX_RX_BUFF | Number of bytes following
(checksum included)

5 Data

n Checksum | 0-255 Obtained by simply adding up
in an 8-bit variable, all bytes
composing the message
(checksum itself excluded).

Table 3—This is the structure for the command packets. Each one
contains all the bytes shown.

documents. You can find the correct compromise
between precision and computing speed by using the
trigonometric capability of the dsPIC30F series.

Every few milliseconds, after the current position elaboration,

I Listing 1—To create a 50 x 50 nibble matrix, you need to define
astruct.

typedef struct
unsigned char Low :4;
unsigned char High :4;
}_Coordinate;

_Coordinate MapXY [251[507;

field mapping divides the unknown field in a2 10 cm x 10 cm
cell grid. Defining a maximum field dimension of 5 m x 5 m,
you obtain a 2,500-cell matrix (50 x 50). Each cell is

=l

R=r+b/2

Figure 2—This is a definition of the terms used in the formulas for a
turning platform.

www.circuitcellar.com = CIRCUIT CELLAR®

defined with a nibble, with a total memory occupation of
1,250 bytes. Sixteen different values can be assigned to
each cell (e.g., n = 00 unknown cell, n = 01 — 10 cell visited
n times, n = 11 obstacle found, n = 12 target of type A
found, n = 13 target of type B found, and n = 14 target of
type C found).

The robot can start from any position in the field.
Note that (0, 0) is the reference coordinate in its refer-
ence system. To translate robot reference system coordi-
nates to a 50 x 50 matrix index pair, the values must be
“normalized” in a 0 to 49 range: Xnorm = (Xrel + 50)
mod 50 and Ynorm = (Yrel + 50) mod 50. Index is the
remainder of division in a range of 0 to 49. A range check
must be performed in advance to avoid overflow if the
field is greater than 5 m x 5 m.

To create a 50 x 50 nibble matrix, you need to define a
struct (see Listing 1). It fills up 1,250 bytes. Eliminat-
ing heap space (not needed if dynamic memory allocation
or file I/O library functions are not used) leaves enough
RAM to work with.

Field-mapping is useful for finding the best exploring
strategy in an unknown field. The robot can direct itself
to the less explored portion of the field (lower “n” value);
it can save time by not stopping twice in an already dis-
covered target; and it can find the best path to reach a
given coordinate, and more.

DEAD RECKONING BY ODOMETRY

Let’s consider the general dead-reckoning algorithm
needed for a DSC- or microcontroller-based system. Once
you have the information about the distance traveled by
each wheel in a discrete time update (odometry), you can
estimate the robot’s position coordinates with the same
periodicity without any external reference (dead reckon-
ing). Refer to G.W. Lucas’s aforementioned paper for
information about the mathematics.®! In the following
equations, I used Lucas’s symbols and terms:

o(t) = (Ve ;VL)t + 9,
x(t) = x, + EE:: jii;[sin[(vk ;VL)t + 1‘}0] - sin(ﬂo):l
y(t) =y, - Zgz: izi;[cos((w ;VL)t + ﬁoj - cos(ﬂo)}

Figure 2 shows the terms used in the formulas for a turn-
ing platform.

For each discrete time interval, the system measures
the number of pulses generated by the encoders. Know-
ing the distance represented by a single encoder tick, you
can calculate the distance traveled by the wheels (S;, S,)
in time t. Note that velocity = distance/time:

Ve =

According to Lucas:

April 2009 — lssue 295

w
O

April 2009 — lssue 295

w
=)]

R =

b(vg +v,)

b(Sy +S,)

Z(VR -v,)

You can calculate:

x(t) = x, + R|sin

<

—_
—

~

Note that at time t, the differences with the coordinates

y —RCOSM
0

(S

%SL) + 1‘}0] — sin(9,)

2(SR - SL)

+ ﬁoj - cos(9,)

at t._ are:

AY =

(SR — SL)
b

Ax = R[sin(Aﬁ +0,_,) - sin(ﬁi,l)]

Ay = R[cos(ﬁi_,) - cos(

AY + D, _,)]

By performing a summation of each delta x in x variable
and each delta y in y variable, you know the current coor-

dinates (position and orientation) of the platform.

To avoid computational errors (divide by zero) and wasted

Left rotary encoder

Right motor

Motion feedback oo B
QEB [QEA Ic | Mmoo A
L7 2
QEI Mode 4x digital Input capture > encoder
filter 13 ps pulse period (t)
PulsesL v
VelMesL
sit
Cycle =1 ms
Motor controller 2
VelMesL
PWM M
Module :
H-Bridge 2
VelDesL —»| PWM g
ADC |
Module .
Current sensing
DistL = KL VelDesL =
x PulsesL VelDes+DeltaV
¥ mes
Angle DeltaV =
dmes | PID Kxo
Odometry 1
Coordinate Xmes, 1
Ymes,¥mes 2 Gdes
4—| 1 VelDes
DistMes,des ' _‘ 2
>
£1 (Xdes, Ydes), eIl
(Xmes, Ymes)]
(ﬁ 2
XDes, YDes Jdes
f [9des, DistDes] DistDes
2
XDes
YDes
DistR = KR VelDesR =
x PulsesR Supervisor VelDes-DeltaV
ADC Current sensing
Module 1
VelDesR L—> A H-Bridge 1
PWM
VelMesR — Module | nnnt
Motor controller 1
ycle =1 ms
VelMesR
PulsesR S
T
QEI Mode 4X digital Input capture > encoder
filter 13 ps pulse period (t)
QEB Taea ic | UL A
Motion feedback mrre B

O

Right rotary encoder

Figure 3—These software logical blocks govern the robot’s navigation.

CIRCUIT CELLAR®

= www.circuitcellar.com

controller time, both the S, and S, vari-
ables must be checked in advance.
Defining a quasi-zero value S__. , which
takes care of minimal mechanical and
computational approximations, you get
the following. If|S, -S| < S_, , the plat-
form is traveling in a nearly straight line
and you can use the method from

Lucas’s paper without approximations:®!

AS = 7(5“ ;SL) =S, =8,
o= S=S)
b

Ax = AS cos(l‘}i_,)
Ay = AS sin(ﬂifl)

If|S, + S < S, the platform is pivot-
ing around its own vertical axis with-
out moving. Thus:

AY =

Ax = Ay =0

SOFTWARE ARCHITECTURE

Figure 3 shows the overall software
architecture for the dsNavCon board’s
control procedures and navigation strate-
gies. The most important logical blocks
are the four PID controls. They are
shown in a three-level nested control
loop. Starting from the top level, the
Distance PID controls the robot’s mean
speed toward the target every 50 ms.
The Angle PID corrects the orientation
to point the target every 10 ms by
adding or subtracting a DeltaV to the
mean speed to make the vehicle spin
around its vertical axis. By combining
the outputs of the Angle and Distance
PIDs, you can determine the setpoint for
the most internal level, the Speed PIDs.
Each of the PIDs controls the speed of its
wheel every 1 ms to maintain the value
set by outer loops (see Figure 3). By com-
bining the output of Angle and Distance
PIDs, you can obtain the setpoint for the
Speed PIDs (see Figure 3). The three lev-
els are nested. But, fortunately, the dif-
ferent PIDs (speed, orientation, and dis-
tance) are independent of each other,
simplifying the K parameter’s calibration
procedure. They can be set one at a time
starting from the bottom.

The motor controllers appear as dark
boxes that take care of the wheels’

www.circuitcellar.com <« CIRCUIT CELLAR®

speed. The supervisor sends them the
reference speed (VelDesX: desired veloc-
ity) and the input capture modules of
the microcontrollers get pulses from the
encoders connected to the motor axis
and derive the rotational speed of the
motors (VelMesX: measured velocity).
By combining the values in the PID
control Speed PID every 1 ms, you can
obtain the necessary PWM value in that
condition to keep the desired speed of
each wheel. In PID terminology,
VelDesX is usually called the setpoint
or control reference. VelMesX is the
measured output or process variable.
PWM is the control output, manipulat-
ed variable, or simply output.l®!

The Quadrature Encoder Interface
(QEI) modules get both the A and B
pulses from the encoders. They receive
the traveling direction and the number
of pulses in 4x mode (counting the ris-
ing and falling edges of signal A and
signal B: 2 x 2 = 4) to the supervisor.

Multiplying the number of pulses by
K—which indicates the distance trav-
eled for each encoder pulse—you can
determine the distances traveled by
right and left wheels every 10 ms. The
supervisor combines this traveling
information and applies the dead-reck-
oning procedure to determine the
robot’s position coordinates: Xmes,
Ymes, and 0Mes (orientation angle).

The supervisor receives an external
navigation command via the serial
interface (telemetry) or via the IC inter-
face (main board). Different strategies
can be applied: A—Free running is
movement at a given speed in a given
direction (VelDes, 6Des). B—Cartesian
is movement toward a given coordinate
(XDes, YDes). C—Polar is movement for
a given distance in a set direction (Dist-
Des, 6Des).

In mode A with the logical control
switches in position 1, only the PID
control (Angle PID) is used on the super-
visor (see Figure 3). This combines the
desired angle 0Des with the measured
angle 0Mes computed by the odometry
procedure—to obtain the value of the
rotation angular speed o of the vehicle
around its vertical axis—needed to cor-
rect the orientation error.

The DeltaV value is proportional to
o. It’s added to VelDes to obtain the left
wheel’s speed and subtracted from

-'“'I-' Ian;{:\
b3 ;.%i‘*.
g

\;ol'?ffai- s‘.. -_hr

April 2009 — lssue 295

e
~
N
@
=
2
%
)
|
j=p}
=
=
N
==
=
<

VelDes—to obtain the right wheel’s
speed—in order to keep the heading
corresponding to the 6Des value, while
the center of the robot is still moving
at the VelDes speed.

In mode B, with the logical control
switches in position 2, the desired speed
VelDes is calculated by the PID control
Dist PID, and it is used as in mode A.
This means the mean speed decreases
proportionally to the distance from the
target. It becomes zero when the target is
reached. The measured input for this PID
(DistMes) is computed as a function of
the current coordinates and the destina-
tion coordinates. The desired orientation
angle 0Des also comes from the same
procedure and it’s used as reference input
for Angle PID. The reference input for
Dist PID is 0, meaning that the destina-
tion is reached. With @ and VelDes avail-
able, the wheels’ speed control runs as it
does in the first mode.

In mode C, with the logical control
switches in position 2, the destination
coordinates (Xdes, Ydes) are computed
once at the beginning as a function of
input parameters (DistDes, 0Des). After
that, everything operates as it does in
mode B.

A sequencer is also available to per-
form some specific paths for UMBmark
(or something like the RTC competition I
mentioned in the first part of this article
series).” Like a washing machine timer, it
schedules the robot’s behavior by execut-
ing a series of primitives. The sequence is
written in some arrays, and it is synchro-
nized by external events. Some higher-
priority events (e.g., obstacles found by
external sensors|) can override scheduling.

There are plenty of affordable robots
on the market. Plus, the MPLAB devel-
opment environment is free. You can
design the schematic and PCB with the
freeware version of CadSoft Computer’s
Eagle. These tools are versatile enough
for a wide variety of applications.
Affordable electronic and mechanical
components are also widely available
on the Internet. Do some reseach before
shelling out a lot of cash for an expen-
sive kit.

No more excuses. You are now ready
to design, build, program, and test your
own robot. &l

Guido Ottaviani (guido@guiott.com) has worked with electronics and ham radios
for years. After working as an analog and digital developer for an Italian commu-
nications company for several years, Quido became a system integrator and
then a technical manager for a company that develops and manages graphic,
prepress, and press systems and technologies for a large Italian sports newspa-
per and magazine publisher. A few years ago, he dusted off his scope and sol-
dering iron and started making autonomous robots. GQuido is currently an active
member in a few Italian robotics groups, where he shares his experiences with
other electronics addicts and evangelizes amateur robotics.

To download code, go to ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2009
/225.

[1] Microchip Technology, Inc., Microchip code examples, “CE019: Propor-
tional Integral Derivative (PID) Controllers & Closed-Loop Control,”
2005, www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&
nodeld=2620.

[2] M. Palmer, “AN545: Using the Capture Module,” DS00545D, Microchip
Technology, Inc., 1997.

[3]J. Borenstein, H. R. Everett, and L. Feng, “Where Am 1?: Sensors and
Methods for Mobile Robot Positioning,” University of Michigan, 1996,
www-personal.umich.edu/~johannb/position.htm.

[4] D. Walters, “Implementing Dead Reckoning by Odometry on a Robot
with R/C Servo Differential Drive,” Encoder, 2000, www.seattlerobot-
ics.org/encoder/200010/dead_reckoning_article.html.

[5] G. W. Lucas, “A Tutorial and Elementary Trajectory Model for the Dif-
ferential Steering System of Robot Wheel Actuators,” SourceForge, 2001,
http://rossum.sourceforge.net/papers/DiffSteer/DiffSteer.html.

[6] Wikipedia, “PID Controller,” http://en.wikipedia.org/wiki/PID_controller.

[7]J. Borenstein and L. Feng, “UMBmark: A Method for Measuring, Com-
paring, and Correcting Odometry Errors in Mobile Robots,” 1994,
www-personal.umich.edu/~johannb/umbmark.htm.

G. Ottaviani, www.guiott.com/Rino/index.html.

Roboteck Discussion Group, http://it.groups.yahoo.com/group/roboteck/
(Italian) or http://groups.yahoo.com/group/roboteck_int/ (English)

Robot Italy, www.robot-italy.com

Eagle Software
CadSoft Computer, Inc. | www.cadsoftusa.com

dsPIC30F3013 Digital signal controller, dsPIC30F4012 motor controller,
and dsPIC33FJ64MC802 microcontroller
Microchip Technology, Inc. | www.microchip.com

CIRCUIT CELLAR® = www.circuitcellar.com

